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Starting from the transformation properties of an action integral of a system under 
local and nonlocal transformations, we derive the generalized Noether identities 
for a variant system under those transformations. The applications of the theory 
to the Yang-Mills field with higher order Lagrangian is presented under the 
Coulomb gauge condition, a new conserved PBRS charge is found which differs 
from the BRS conserved charge, and another conserved charge connected with 
nonlocal transformation is also obtained. 

1. INTRODUCTION 

Local gauge invariance is now a central concept in modem field theory. 
The classical Noether (1918) identities refer to invariance of the action 
integral of the system under a local transformation parametrized by r arbitrary 
functions and their derivatives. If an action integral is invariant under such 
transformation, then there are r differential identities (Noether identities), 
which involve the functional derivatives of the action integral. These identities 
were discussed by Hilbert (1924) and Bergmann (1949) and Anderson and 
Bergmann (1951) in connection with electrodynamics and general relativity, 
by Drobot and Rybarski (1958-1959) in connection with hydromechanics, 
by Sundermyer (1982) in connection with gauge theories, and by others (Li, 
1993a) in a general way. A generalization of classical Noether identities for 
a system with noninvariant action integral under a local transformation was 
given in Li (1987). A canonical Noether identity in phase space was also 
developed (Li, 1993b). 
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In the quantum theories of the Yang-Mills field (Kuang and Yi, 1980) 
and the conformal transformation of quantum fields in gauge theories (Fradkin 
and Palchik, 1984; Palchik, 1985), nonlocal transformations were introduced. 
The invariant effective Lagrangian under the BRS transformation is not 
invariant under the gauge transformation alone. Therefore, the investigation 
of noninvariance properties of a system under local and nonlocal transforma- 
tions is necessary. Dynamical systems described in terms of higher order 
Lagrangians obtained by many authors are of much interest in connection with 
gauge theories, gravity, supersymmetry, string models, and other problems (Li, 
1991, 1993c). 

In this paper we discuss a more general case for the system with a 
Lagrangian involving higher order derivatives. Starting from the trans- 
formation properties of an action integral of such a system under local and 
nonlocal transformations we derive the generalized Noether identities (GNI) 
for a variant system under those transformations. These GNI are integral- 
differential identities which involve the functional derivatives of the action 
integral. The applications of the theory to effective higher order Lagrangian 
for the quantum gauge field in the Coulomb gauge is given, a new conserved 
PBRS charge is found which differs from the BRS conserved charge, and 
another conserved charge connected with the nonlocal transformation is 
also obtained. 

2. GENERALIZATION OF NOETHER IDENTITIES 

Let us consider a physical field defined by n field functions ~b~(x) 
(a = 1, 2 . . . . .  n) x = (x ~ x/), x ~ = t, i = 1, 2, 3. The fiat space-time metric 
is -q~ = d i a g ( + - - - ) ,  ix, v = 0, 1, 2, 3. The Lagrangian density of the 
system, which may involve higher order derivatives of the field functions, is 

X -m- ~(X;  ~ba(X) . . . . .  ~,b~(m)( ) . . . .  ) (1) 

where 

+,%<m)(x) = O~<m)~b~(x) = ,(0~ 0~--- 0x)d~(x) (m = 1, 2 . . . . .  N) 
k_ J %c 

m 

(2) 

The action integral of this system is 

I = In d4x ~(X,  ~b a, . . . .  ~b,~(,n) . . . .  ) (3) 

Throughout the paper it is supposed that all functions and their derivatives 
up to required order are smooth enough. 
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Let us consider the transformation properties of an action of the system 
under general local and nonlocal transformations, whose infinitesimal trans- 
formation is 

( x~' = x ~ +Axr  = x ~ + Rge"(x) 
+'~' (x') = +~(x) + •  - -  

Jo = r + A~Y(x) + 

where 

d4y F(x, y)B~(y)~(y) 
(4) 

R~ = r~(z)O~(t), A~ = a~'v(m)ov(m) , B~ = b~(")O~(,o 
, .  . ( 5 )  

r~q) = r~~" , a~(~n) = a~.~..~, ~h ~(', = b~.~.-o 

and r~ ~(0, a~ ~(m), and b~ ~n) are functions of x, ~ ,  ~b,~(m); e~(x) (~ = 1, 2, 
. . . .  r) are arbitrary infinitesimal independent functions; the values of e~(x) 
and their derivatives up to required order on the boundary of domain 1) 
vanish. It is supposed that under the transformation (4) the variation of (3) 
is given by 

~I = f d4x [0~(A~(x))  + W] (6) 
3~ 

where 

W = U,~e'~(x) + Jo d4y V,~(x, y)e~(y) (7) 

A~ = ~.~v(i)(x)Ov(i) ,  Ucr : U~ff(J)(x)Op,.(j), Vff = V~(k)(x, y)O~r (8) 

and h~ ~(i), U~ (:), and V~ <k) are functions of the x, ~b% ~,~(m)- For a weakly 
quasiinvariant system (Lusanna, 1991), W o_ 0, which means "evaluated on 
the trajectory of motion." Under the transformation (4), from (3), (4), and 
(6) we have (Li, 1987) 

ffl d4x ( ~---~ [(A~r - dP~,r 

+ ~ d4y F(x, y)B~(y)~(y)] + O~(j~e~(x)) 
3~ 

IN-I fl~ + O~ m~=O l-I~v(m)Ov(m) d4y F(x, y)B~(y)~'~(y)]} 

day V,~(x, y)e~(y)] (9) 
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where 

~6~ - ( -  1)ma~(m)Y~ (m) 

1 O~ 
~ ( ' )  = m-'~. ~ 0 ~ all permutation ~,lx(m) 

of indices 
N- (m+l )  

fl~ ~(m) = ~] ( -  1)lO~(t)~('~)xq) 
l=O 

N-1 

(lO) 

(11) 

(12) 

(13) j~ = 3~R~ + ~ rI~(,.)n ta~ ~ x ~l,~ ,,~(.,)t.~,~ - ~b.xR,~) - A~ 
m=0 

Using the Gauss theorem, we can get the term of the integral of O~(j~e '~) in 
(9) to vanish because of the boundary conditions of e~(x), after which we 
functionally differentiate (9) with respect to cO(z) (p = 1, 2 . . . . .  r), we obtain 

= O~ + Ja d4x f'p(x, z) (14) 

where Ap, Bp, R~, Up, and 17' 0 are the adjoint operators with respect to 
A~, B~, R~, Up, and Vp, respectively (Li, 1987). Therefore, we have the follow- 
ing generalized second Noether theorem: 

If the variation of an action integral (3) is given by (6) under the 
transformation (4), then there are r identities (14) between the functional 
derivatives gIIg~ ~ and their derivatives up to some fixed order. 

These identities (14) are called generalized Noether identities (GNI) and 
are integral-differential ones. In case of invariance (W = 0) the fight-hand side 
of (14) equals zero. Thus, we have identity relations between the functional 
derivatives and their derivatives: 

-~ gI gI 
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;o ]} + dgx B~ O~ ~ II~(m~o~(,~T(X, Z) 
m=0 

= 0 (p = 1, 2 . . . . .  r) (15) 

These identities are valid whether the equations of motion are satisfied or not. 

3. WEAK CONSERVATION LAWS 

Let us now consider a system with noninvariant action integral under 
local transformation. As is well known, in massive Yang-Mills theory, the 
Lagrangian is not invariant under gauge transformation; interaction of massive 
Fermi fields with gauge fields is not invariant under the chirality transforma- 
tion of the Fermi fields; the effective Lagrangian with Faddeev-Popov ghost 
fields is not invariant under the gauge transformation alone; the invariance 
is restored only under the BRS transformation. Therefore, for the Lagrangian 
of a system which is not invariant under the local transformation, the discus- 
sion of the transformation properties is necessary. Let us put ~x~ = 0 and 
F(x, y) = 0 in (4), as is usually done in the discussion of gauge transformation, 

+~'(x) = ~ ( x )  + A~C(x) = ~ ( x )  + (a~ + a~O~)C(x) (16) 

where a~ and a~ ~ are functions of x and ~b '~. Under the transformation (16), 
suppose that the variation of the Lagrangian is given by 

p~p 3~ = (U~ + U~O~ + U~ O~Ov + U~XO~OvOx)C(x) (17) 

where U~, U~, U~ , and are functions of x, ~b, and ~,w For example, a 
system with second-order Lagrangian for Yang-Mills theories belongs to this 
category. Under the transformation (16), from the variation of the action 
integral (3), one has the basic identity 

31 31 
3qb--- d a~'~(x) + ~ a~O~ ~'~(x) 

-I-O~[tNz~=lo l~v(m)Ov(m)A~rECr(X)] 
Ixv = (U~ + U~O~ + U~ 0~0~ + U~o~o~ox)~(x) (18) 

The GNI (14) is this case becomes 

a ~ - - ~  - O~ a~- ~ = U~ - O~U~ + 0 ~ 0 ~  ~ - O~O~OxU ~x (19) 

Multiplying the identities (19) by C(x), summing with index ~ from 1 to r, 
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and subtracting the result from the basic identity (18), if the indices i~, v of 
the coefficients Ug v are symmetrical and the indices V~, v and i~, k of  the 
coefficients U~ "• are also symmetrical, then we obtain 

OvJ~" = 0 (20a) 

N - I  
j ~  = ~ rt~v(m)~ a~,~,~t~ 1,~ ~'v(m~'-'c~ ~ J  + a~ ~ e~(x) 

m=0 

- U ~ ,~ ( x )  + (o~U~)~'~(x)  

- U ~ % ~ " ( x )  + U~Xo~ox~"(x) + (a~a~u~X)~"(x) 

- (o~u~x)oxe'~(x) (20b) 

The equations of  motion were not used in deducing (20a), (20b), hence these 
expressions (strong conservation law) holds whether the equations of motion 
are satisfied or not. 

I f  e"(x) = P '~ e0~p(x) in the transformation (16), where e~ are numerical 
parameters and ~(x )  are functions of  x, ~b ~', and +.~(m), then, along the 
trajectory of the motion, 8I/8+ '~ = 0, we can obtain the weak conservation laws 

O),J~ = 0 (21a) 

N - I  

m = O  

l~v~. tr l.zvh ~r p.vh fr (O,,O~,U,, )~p (21b) + U,~ 0~ax~p + - (O~U,~)ax~p 

Thus, one can see that for certain cases the GNI may be converted into 
(weak) conservation laws along the trajectory of motion even if the Lagrangian 
~s of  the system is not invariant under the specific transformation (16). This 
algorithm for deriving the conservation laws differs from the classical first 
Noether theorem, where invariance under a global transformation implies the 
conservation laws. This gives us a new method to find the conservation laws 
for a system. 

4. PBRS CHARGE 

Yang-Mills theory with a higher order Lagrangian is given by (Gitman 
and Tyutin, 1990) 

1 F a  Fal . t v__  Fla lYbl.~vl"~aXlT'e (22) 
~ Y M  = - - - 4 - - Y . v - -  K L " b k l  t i e  I ixv 
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where 

,, #~ aba,- (23) F~,, = 0,A~ - 0,~A~ + J bc~p.~,, 

O ~  = 8~,Op. + f~,,A~ (24) 

and f~b are structure constants of the gauge group. The Lagrangian (22) is 
invariant under following gauge transformation: 

8A~ = Dg~eb(x) (25) 

where d'(x) are arbitrary functions. This local invariance of Lagrangian ~VM 
implies that the system is subject to some inherent phase space constraint 
(Li, 1993a), and one can find that all constraints are first class. In the quantum 
theory for a system with first-class constraints, the gauge condition must be 
chosen. Through a transformation of the generating functional of the Green 
function for the Lagrangian (22) in the Coulomb gauge one can obtain the 
effective Lagrangian (Gitman and Tyutin, 1990) 

1 
~eff = ~YM -]- r -- ~ 0  (oiAa)2 (26) 

where 

~gh = - oiCa(x )D~,icb(x) (27) 

-Ca(X), Cb(x) are ghost fields, and ao is a parameter. The Lagrangian (25) is 
invariant under the following BRS transformation: 

f OAag = D~b~Cb,r 
l a  b e  { 8C a -~f~,~C C T (28) 

where -r is Grassman's parameter. According the classical first Noether theo- 
rem, a consequence of the BRS invariance of the effective Lagrangian is the 
presence of conserved current J~ in Coulomb gauge, 

__ 0~eff // Oq,~eff \ j , ,  OYar D,~cb + ap(D~,~Cb) _ Opl_77g._lD~,oC b 
OA~,~ OA~,~p \ OA~,~p l 

O'~eff ~a  Oca~eff ~'-~a 
+ + r 

1 
= Jy -- -~ Ov-caf~eCbCe -Jr D~bvCbO~ (29) 



1952 Li 

where 

J~ = --~ maAepOoFm~ + j a e j  fdZVt~za ' Jt 

Op(OPF a~ + f~e~Ae~ ]D~,~C a 

+ (O~ ~ + F~'dAePFdr -- Fa~D~,~C a (30) 

which implies the conserved BRS charge 

Q -~ f d3xJ~ = f d3x [J~ - ~f~eOO-cacbce "-~- Dg~176 (31) 

Now let us consider only the transformation of the Yang-Mills fields, 
fixing the ghost fields in the BRS transformation, i.e. 

{SA~ = Dg~Cb'r 
~C a ~ca = 0 (32) 

Under the transformation (32), the effective Lagrangian (26) is variant, and 

~ e f f  = F(O) + U~aOr ~ + U~ar ~ 

= F(0) - 1 (oia~)o~or _ lf~c(oia~)a~ogO ~ 
O~ 0 Ol. 0 

- f~cOr ~ (33) 

where 0 a = C~'r, and F(0 )  does not contain the terms of the derivatives of 
0 ~. Along the trajectory of motion, from (21) and (33), we obtain the following 
conserved current J~, in Coulomb gauge: 

jVp = j~ + f~cOVCcCbCa (34) 

Thus, we obtain the conserved PBRS charge (P stands for "partial") 

f ; - QI, = d3x jo = d3x [jo + f~,~ooc~cbcq (35) 

This conserved PBRS charge differs significantly from the conserved BRS 
charge (31). 

As is well known, BRS charge annihilates the vacuum; the conserved 
PBRS charge may also impose some supplementary conditions on physical 
states as well as BRS charge and ghost charge. 
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5. N O N L O C A L  T R A N S F O R M A T I O N  A N D  CONSERVATIO N 
LAWS 

It is easy to check that the terms ~YM and ~gh in the effective Lagrangian 
(26) for higher order Yang-Mills theory is invariant under the following 
transformation: 

Af(x)  = A~(x) + D~pe'~(x) (36a) 

C'~'(x) = Ca(x) + ig(T~)~Cb(x)~'~(x) (36b) 

O~'-Ca(x ') = O~-Ca(x) - igO~-Cb(x)(T,r)~'r(X) (36C) 

where T,~ (or = 1, 2 . . . . .  M) are representation matrices of the generators 
of the gauge group, and e~(x) are infinitesimal arbitrary functions. (36c) can 
be written as 

C~' (x) = Ca(x) - igCb(x)(T,,)ge'~(x) (36c') 
ig 

+ D O~[-C~(x)(T~)~O~(x)] 

where []  = ~1~0~0~. (36c') can be reduced to (Kuang and Yi, 1980) 

Ca'(x) = C~(x) - igCb(x)(T,O~,~'~(x) 

+ ig ~ day Ao(x, y)O~[-Cb(y)(T,~)gO~o~'~(y)] (36c") 
) 

where 

DA0(x, y) = i5(4)(x - y) (37) 

The transformation (36c") is a nonlocal one. Under the transformation (36a), 
(36b) and (36c"), from (14) and (26), we obtain 

D . r  + ig(To)b ~ Cb(Z) -- igCb(z)(To)~ 
8-C"(z) 

f• 4 ~a Y //O~eff\ ] l ~oi[oi(okA~) ] (38) 

where 

ff)~ = - ~ 0 ~  + f~A~ 

B~(z) = igO~[Cb(z)(To)gO ~] 

(39) 

(40) 



1954 Li 

Under the Coulomb gauge, along the trajectory of motion, from (38) we obtain 

- b  ,, I- /o~ef~\ z)] 
OZP" fa d4x C (z)(Zp)bOzlx[Oxv~)Ao(x , _ = 0 (41)  

which implies the conserved charge 

(V In 4 - b  a [ fo~eff\  ] Q' = d3z d x C (z)(Tp)bOzol Ox~|TT~-lAo(X, Z) = const (42) 
1 \ o C ~ /  

Substituting (26) into (42), we get 

I fo - 
Q' = d3z d4x Cb(z)(To)g(O~D~Ce)OzoAo(x, z) = const (43) 
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